Linear and logistic regression

Predicting numeric values and probabilities

Learning goals

- 1. Learn the idea, limitations and applicability of linear regression in predicting values of numerical variables.
- 2. Learn to carry out linear regression analysis in Python.
- 3. Learn to apply a logistic regression model to predict an outcome of an event.
- 4. Learn to carry out the logistic regression analysis in Python environment.

Foundations

- Linear regression analysis is a method to describe how the values in a variable of interest depend on on other variables.
- E.g. electricity consumption depends on the size of the flat, number of inhabitants, number of refridgerators etc.
- The variable of interest is called response variable.
 - In the example, it is the energy consumption.
 - The response variable must be of interval or ratio scale.
- The remaining variables are explanatory variables.
 - They must be numeric and of at least interval scale.

Categorical to numeric variables

Original encoding		Re-encoding option 1					Re-encoding option 2		
EyeColour		Blue	Brown	Grey	Green		Blue	Brown	Grey
Blue		1	0	0	0		1	0	0
Brown		0	1	0	0		0	1	0
Grey		0	0	1	0	or	0	0	1
Green	P I	0	0	0	1		0	0	0
Brown		0	1	0	0		0	1	0
Blue		1	0	0	0		1	0	0

- For linear regession, categorical variables should be re-encoded as multiple dummy variables.
- Example: eye colour with four values: blue, brown, grey, green.
- For *n* categories, there are two options:
 - *n* dummy variables (one per category, option 1 above)
 - n-1 dummy variables (one per gategory, omitting one category, option 2 above)

Model construction and predicting

- After data preprocessing, the first step is to build a model.
 - To do this, we need a training set that contains the values of both the explanatory variables and the response variable.
 - In the example, the electricity company could use historical data: for a large number of households, the actual consumption may be known as well as the values of the explanatory variables (square meters etc.)
- Next, the constructed model can be used in prediction.
 - For a new customer, it is straightforward to ask the values of the explanatory variables.
 - The energy consumption can then be predicted using the model.
 - Getting an idea of the consumption by other means could be difficult, as the consumption has not yet happened.

Example

- Let's examine how the course points obtained from exercises (max. 40) predict the points obtained from an exam (max. 60).
- First, plot the observations as a scatterplot.
- It seems that the points are located near a straight line.
- This straight line is called a regression line.
 - The regression line in the example is included in the image, as is its equation.

linear regression (one explanatory variable).

Equation of a regression line

- The general equation of regression line is y = ax + b.
 - Here, *y* is the response variable (exam points).
 - Likewise, x is the explanatory variable (exercise points).
 - Constants *a* and *b* are called regression coefficients.
- The equation of the straight line predicts the value of the response variable.
 - Example: a student scores 15 points in the exercises. The exam points is predicted to be $1,2953 \times 15 + 1,3607 \approx 21$.
- The challenge is to find the values of the regression coefficients *a* and *b* in such a way that the straight line matches the observations in the training set as well as possible.
- To achieve this, the least-sum-of-squares method is applied.

Least-sum-of-squares method

- If the regression line was known, it would be possible to compute the distance of each response variable value from the value predicted by the regression line.
 - These are vertical distances r_i .
 - The goodness of fit of the entire data set to the regression line can be measured by the sum of their squares: $\sum_i r_i^2$.
- The remaining problem is to find a straight line that minimizes the sum of squares.
 - It can be done analytically by means of matrix calculus.
 - Machine learning and statistical software provide means for finding the equation.

Many explanatory variables

- In the example before, there was just one explanatory variable
- The method generalizes to many explanatory variables (MLR, *multiple linear regression*).
- For observation *i*:

$$y_i = \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i$$

- In the example:
 - y_i is the value of the response variable in observation *i*.
 - x_{i1}, \dots, x_{ip} are the values of variables x_1, \dots, x_p in observation *i*.
 - β_1, \dots, β_p are the regression coefficients to be found out.
 - ε_i is an offset constant that specifies where the regression line cuts the y axis.
- Technically, if we have 1 response variable and p explanatory variables, instead of a regression line we have a p-dimensional plane in a p + 1 dimensional space.
 - Due to the high number of dimensions, it is no longer possible to produce a single visualization of the observations and the regression plane.

The assumptions of a linear model

- The general assumptions for making a linear model include that:
 - 1. The relationship between the variables in indeed linear
 - 2. The explanatory variables are not correlated.
 - 3. The variance of error terms is constant throughout the values of explanatory variables.

On applicability

- In traditional statistical analysis a linear model is tailored by stringently analysing each variable.
- In machine learning the starting point is often the inclusion of all potential variables.
 - Unnecessary variables that contribute little to the outcome can then be pruned.
- The interpretation of the constructed model(s) requires caution.
 - Consider the exercise/exam points example: how much can we really say anything about students who have less than 20 exercise points? Can we safely extrapolate?

Estimation error

- Measures for estimation error (aka. prediction error):
 - MSE
 - R^2
- The estimation error is usually higher for the scoring set than for the training set.
 - Danger of model overfitting.
 - Consider validation.
 - Use training set for model building.
 - Use testing set for model evaluation.

Option 1: MSE

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}$$

- Mean squared error.
- Measures the average of squared differences between the observed (y_i) and estimated (\hat{y}_i) values.
 - Lower values are better.
 - 0 indicates that the response variable values can be predicted from the explanatory variables without any error.
 - No fixed upper limit.

Option 2: R^2

$$R^{2} = 1 - \frac{SS_{res}}{SS_{tot}} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

- Coefficient of multiple determination.
- In the equation:
 - SS_{res} is the sum of squares of the residuals (differences between the observed values y_i and the estimated values \hat{y}_i).
 - SS_{tot} is the total sum of squares (sum of squared distances from the mean \overline{y}).
- Describes the proportion of variance in response variable that is explained by the explanatory variables.
 - Higher values are better.
 - The upper limit of 1 is reached when the response variable fully depends on the explanatory variables.
 - 0 indicates the response variable's full independence of explanatory variables.

Residual plots

values

residuals

Residuals

- For an observation, the distance between the observed and predicted response variable value value is called a residual.
- The applicability of a linear model to a data set can be examined by looking at the residuals.
- Ideally:
 - 1. The residuals should be independent from each other.
 - 2. They should be normally distributed.
 - 3. The variance of the residuals should stay constant as the response variable values change.
- To check these, produce a scatterplot where the observed values are on the horizontal axis and the residuals are on the vertical axis.
 - The scatterplot should be symmetrical to the horizontal axis.
 - The vertical axis values should not change as the values on the horizontal axis change.

Variable importance

- Some variables tend to be more important in relation to the model than others.
- Note that for MLR to produce a correct model, standardization is not necessary.
- For non-standardized data, the importance can not be directly inferred from the regression coefficients, as the variables' standard deviation varies.
- Solution: standardize the data first to have:
 - A mean of zero
 - A standard deviation of one
- After standardization, a regression coefficient directly tells how many standard deviations it is away from zero.
 - The higher the absolute value, the more valuable the explanatory variable is to the model.

Example (see stack loss demo)

>	stackloss			
	Air.Flow	Water.Temp	Acid.Conc.	stack.loss
1	80	27	89	42
2	80	27	88	37
3	75	25	90	37
4	62	24	87	28
5	62	22	87	18
6	62	23	87	18
7	62	24	93	19
8	62	24	93	20
9	58	23	87	15
1	9 58	18	80	14
1	1 58	18	89	14
1	2 58	17	88	13
1	3 58	18	82	11
1	4 58	19	93	12
1	5 50	18	89	8
1	6 50	18	86	7
1	7 50	19	72	8
1	8 50	19	79	8
1	9 50	20	80	9
2	9 56	20	82	15
2	1 70	20	91	15

- **stackloss** is a small (n=21) demonstration data set.
- The data is for a chemical factory.
- Variable **stack.loss** is the amount of lost product due to conditions.
- The goal is to estimate it based on the other variables.

Data source: Brownlee, K. A. (1960, 2nd ed. 1965) *Statistical Theory and Methodology in Science and Engineering*. New York: Wiley. pp. 491–500.

From linear to logistic regression

- Earlier we focused on linear regression.
 - In linear regression, the response variable is a continuous variable that can ideally vary in the interval]-∞, ∞[.
 - In practice, the applicability of the model is limited.

From linear to logistic regression

- In logistic regression, the response variable is not a numerical variable but a binary class variable (yes/no).
- The goal of logistic regression analysis is to predict whether an event occurs or no.
- Technically the target of prediction is the probability *p* of an event.
 - Example: predict the probability for a subject experiencing a stroke, or, whether he/she will buy a car.

Logistic regression as a classifier

- As a consequence of estimating the probability of an event, logistic regression model can be used as a binary classifier.
 - Rule: If the probability of an event is estimated to be greater than 0.5, classify as "yes"; otherwise "no".
 - Such binary classification based on the outcomes loses information on the uncertainty.

Probability as a response variable

Recall that the equation in a generalized linear model is of form:

$$y_i = \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i$$

- The probability *p* of an event would be a bad choice for a response variable *y*, since its value is always in the interval [0,1].
- A linear model is designed to provide predictions within an unlimited range.
- Key question: how could the response variable be transformed in such a way that the range becomes [0,1]?

Odds

- Odds describes the ratio between an event and its complement.
 - Denote the probability of an event by p.
 - Odds is then defined as $\frac{p}{1-p}$.
- Let's assume that the probability of a persion winning a running contest is 0,15.
- The odds are $\frac{0,15}{1-0,15} = \frac{0,15}{0,85} \approx 0,176$.
 - The probability of a win is 0,176 times as big as that of a loss.
 - Or, expressed in reverse terms, the probability of a loss is appxroximately
 - 5,67-fold in comparison to that of a win.
- The range of odds is $[0, \infty[$.
 - It is still constrained from the lower edge.
 - In addition, the values of interest are often "packed" close to the zero.

Logit

- If we take a natural logarithm of the odds, we have made a logit transformation for the probability p.
- Thus, logit transformation is expressed as: $\ln \frac{p}{1-p}$
- E.g. the probability p = 0,15 of a win corresponds to the logit value:

•
$$\ln \frac{0,15}{1-0,15} \approx -1,735$$

Logit

8

6

4

р	1-p	In(p/1-p))
0,001	0,999	-6,90675
0,002	0,998	-6,21261
0,003	0,997	-5,80614
0,004	0,996	-5,51745
0,005	0,995	-5,2933
0,006	0,994	-5,10998
0,007	0,993	-4,95482
0,008	0,992	-4,82028
0,009	0,991	-4,70149
0,01	0,99	-4,59512
0,011	0,989	-4,4988
0,012	0,988	-4,41078
0,013	0,987	-4,32972
0,498	0.502	-0.008
0,499	0,501	-0,004
0,5	0,5	0
0,501	0,499	0,004
0,502	0,498	0,008
0,998	0,002	6,212606
0,999	0,001	6,906755

ln(p/1-p))

Logistic regression model

• A logistic regression model is of form:

$$\ln \frac{p_i}{1 - p_i} = \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i$$

- The transformed response variable can vary between $]-\infty,\infty[$.
 - The corresponding probabilities p are in range [0,1].
- If the predicted value of a logit response variable is positive:
 - The prediction for p > 0,5
 - The event is predicted to happen (prediction "1")
- Likewise, a negative predicted value of the logit response variable corresponds to predicted non-occurrence of an event (predicted "0").

Limitations

- Many of the limitations of linear regression can be relaxed for logistic regression. For example:
 - The relationships needs not be linear.
 - The residuals don't need to be normally distributed.
 - The variances of the variables need not be constant.
- However:
 - The response variable needs to be binary.
 - The observations should be independent of each other.
 - Theres should not be much collinearity (dependence between variables).
 - The log odds of the response variable should be linearly related to the explanatory variables.

Limitations

- There is no simple way to calculate the relative importances of the variables.
 - Regression coefficients from normalized data don't provide the answer.
 - This is due to the inherent non-linearities in the model

sklearn specifics

- Logistic regression can also be used as a multiclass classifier.
- By default **sklearn** uses one-vs-rest (OvR) scheme.
 - A binary classifier is built for each value of the categorical response variable.
 - For each binary classifier, all remaining values of the response variable are lumped together.
 - Finally, for each observation, the classifier that provides a classification with a highest confidence score, outputs the final class.

One-vs-Rest classification

	Classifier-specific response variables						
Orig. resp. variable	C1_class	C2_class	C3_class	C4_class			
1	1	0	0	0			
2	0	1	0	0			
3	0	0	1	0			
4	0	0	0	1			
2	0	1	0	0			
2	0	1	0	0			
1	1	0	0	0			
4	0	0	0	1			
3	0	0	1	0			

• For logistic regression, **sklearn** implements the OvR schema automatically, under the hood.

Example (see stroke demo)

	ID	Weight	Smoking	Exercise	Cholesterol	Income	Exphappiness	Birthyear	Sex	Stroke
0	1	117	1	2	8.0	1080	27	1913	М	1
1	2	62	0	8	5.5	2120	55	1949	М	0
2	3	74	0	6	4.8	3170	65	1976	М	0
3	4	77	0	5	4.2	4740	61	1973	F	0
4	5	67	0	8	4.5	1900	53	1929	М	0
5	6	76	0	6	6.2	3410	72	1959	F	0
6	7	63	0	7	4.1	3640	71	1979	F	0
7	8	75	0	5	5.2	2500	99	1960	F	0
8	9	70	0	6	4.9	2110	48	1922	F	0
9	10	82	0	5	5.8	2560	34	2007	F	1

- In **stroke** data set, the data consists of people that have experienced a stroke.
- The goal is to predict whether a second stroke will occur.

