
1
Machine Learning with Python

Sendai KOSEN
Vesa Ollikainen

Classifiers

Idea, kNN, decision tree, random forest

Learning goals

1. Learn the idea of classifiers.

2. Understand the idea and applicability of kNN.

3. Understand the idea and applicability of decision tree
and random forest classifiers

4. Learn how to validate the data for model overfitting.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

2

Classification

• The goal of a classifier is to classify each observation
into one of prespecified classes.

• The response variable contains the class information.

• The classification is based on the explanatory variables
values.

• There can be two or more classes for the response
variable.
– For a credit decision: {yes, no}
– For image recognition tens of thousands of classes: {fire

truck, tram, nose, cat, dog, snowball, statue, …}
• See e.g. the demo of Microsoft image recognition API:

https://azure.microsoft.com/en-us/services/cognitive-
services/computer-vision/

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

3

Example

• Recall that Iris species determination was a classification problem:
– Four explanatory variables:

• Sepal length
• Sepal width
• Petal length
• Petal width

– One response variable
• Species: {Iris Setosa, Iris Versicolor, Iris Virginica}

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

4

Example

• The goal in classification is to build a model that turns
the explanatory variable values into a response variable
value.

• A decision tree is an example of such a model.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

5

Example

• The generated model can be used for prediction:

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

6

?

?

?

?

Classification methods

• Various methods can be used for classification:
– kNN (k nearest neighbours)

– Decision tree

– SVM (support vector machine)

– Logistic regression

– ANN (artificial neural network)

• The goodness of a classifer’s outcome can be measured by:
– Accuracy

– Precision

– Recall

• Next, let’s focus on kNN and decision trees.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

7

kNN algorithm

• kNN (k nearest neighbours) algorithm repeats the
following steps for each observation to be classified:
1. Compute the distance of the observation to each of the

observations in the training set.

2. Based on the distance, sort the observations into increasing
order.

3. Select those observations that are among k closest
observations (i.e. the k first observations in the sorted training
set).

4. Predict the class that is most common in the set of k closest
training set observations.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

8

kNN algorithm

• See the demo spreadsheet in the material for Day 2.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

9

Evaluation of kNN

• Strengths
– Easy to understand and implement.
– Works well for a large group of problems.

• Weaknesses
– Classification of a new observation requires memorizing and

sorting the entire training set
• Computation time and memory consumption

– Hyper parameter k.
– Requires the measurability of distance between the

observations.
• The choice of the measure is not always self-evident.

– Euclidian distance vs. Manhattan distance vs. other distance
measures

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

10

Idea of decision trees

• Decision trees are a classification method.

• They are suitable for
– Visualizing decision-making processes
– Classifying observations into predetermined classes

• The decision trees describe how certain conditions lead into an action or an
outcome for each observation

• Decision trees can be used as a tool for prediction.
– The prediction is based on a decision tree constructed from earlier observations with know

outcome.
– For example, predict occurrence of stroke (yes/no) based on age, smoking, and cholesterol

level.
• The occurence of a stroke is a response variable.
• The other variables are called explanatory variables.

• The explanatory variables can be of any scale (class, ordinal and/or interval).

• Let’s consider decision trees as a visualization tool first.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

11

A decision tree: an example

• An example depicts the formation of a student’s state housing benefit in
Finland (until 2017).

• A choice is made in each internal node of the tree.

• The leaf nodes (aka terminal nodes) represent the potential outcomes.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

12

Probability distribution as an outcome of
classification

• The decision tree of the previous example produced an absolute
outcome (class).
– The conditions unequivocally determined the class of the observation.
– There were four classes:

• No benefit
• 58,87€
• 80% of housing costs
• Maximum benefit (80% × 252€)

• The outcomes of classification can be probability distributions.

• Example: classify fruit into apples and oranges based on peel
colour and fruit size.
– An outcome of a decision tree can be e.g. that an individual fruit has a

93% probability of being an apple and a 7% probability of being an
orange.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

13

Prediction with decision trees

• Based on a training set
(aka. learning set) a model
is generated. The model
tells the rule how the value
of a response variable is
deduced based on
explanatory variables.
– For the learning set, the

correct answer is known.

• For the scoring set, the
goal is to predict the value
of the response variable
based on the constructed
model.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

14

Prediction: an example

• Classify fruit based on peel
color (RGB) and diameter.

• Step 1: Build a model
(decision tree) based on the
training set.
– Correct answers, i.e. human-

classified apple/orange values,
are used in the construction

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

15

Prediction: an example

• Step 2: In production, the model (the decision tree) is
applied for classifying the actual, unknown fruit.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

16

Construction of a decision tree

• Key question: ”How can we construct the decision tree
in such a way that it classifies as well as possible?”

• Good classification referes to the situation where the
probability distributions in the leaf nodes are as uneven
as possible.
– This makes the classifications more reliable.

– E.g. a node with ”93% apples, 7% oranges” is better than a
node with ”88% apples, 12% oranges”.

• In the next example, we construct a decision tree for
predicting the survival of passengers in RMS Titanic.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

17

Example: RMS Titanic

• RMS Titanic hit an iceberg on its
maiden voyage on April 14, 1912.

• There were 1309 passengers
onboard.

– i.e. the data set (passenger record)
contains 1309 observations.

• The variables are
– Travel class (1/2/3)
– Gender (male/female)
– Age (integer, except for babies)
– Survival status (1/0)

• The survival status is considered
as a response variable.

– The remaining variables are
explanatory variables.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

18

Image: public domain.

RMS Titanic: two decision trees

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

19

• The blue vs red color in the bar depicts
the proportion of the survived vs
deceased passengers.

• The integers below are numbers of
observations.

5 101 209 7 3 11 29

144 106 216

843

800144

Size of the decision tree

• At first glance, a more complex decision tree
automatically seems to produce a more accurate
classification.

• However, there’s a danger of model overfitting.
– There’s always random noise in the data. When the

characteristics of the noise are incorporated into the model, the
prediction accuracy does not improve.

– This is revealed by validation, which we will cover shortly.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

20

Hunt’s algorithm

• Hunt’s algorithm is a classic decision-tree construction algorithm.

• It starts from an empty tree that contains only the root. Initially, all
observations go to the root node.

• In subsequent steps, the tree is constructed top-down by reiterating
the two steps:

1. Find a division rule that splits the observations in the node into two or more
groups in such a way that the distributions of the response variable are as
different as possible between the resulting nodes.

2. Based on the optimal division rule, create two or more child nodes for the
node at hand. For each child node, repeat from Step 1 unless the termination
criterion is met.

• The termination criterion: quit splitting a node when:
– All observations fall into the same class, or,
– There are no differences between the observations that the split can be based

on, or
– The number of observation falls below a predetermined mininum threshold.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

21

Split rules in Hunt’s algorithm

• Initially all passenger of RMS Titanic are in the root
node.

• To begin with, all possible split rules are tested:
A. Split based on gender
B. Split based on travel class
C. Split based on age.

• This is computationally more challenging as there is a infinite
number of potential cutoff points to be considered

• C4.5 algorithm can use non-categorical variables and dynamically
find the optimal cutoff point.

• Gini index (see following slide) can be used to find the
best split rule.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

22

Gini index in testing split rules

• It is necessary to find a criterion for goodness of split in
a decision tree node,

• Gini index (aka. Gini coefficient , Gini impurity) of a
node measures how tightly the observations in a given
node fall into the same class.
– If all observations go strictly into the same class, Gini index

equals zero.

– As the variation increases, Gini index approaches unity.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

23

Gini index

• For a node :

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

24

• For a split:





n

i
iptg

1

21)(


Tt

tg
T

t
)(

||

||

where is the number of classes, and is the probability
that an observation falls into class .

where is the set of all child nodes, is the number of
observations in a single child node, and is the total
number of observations in all child nodes (i.e. the number
of observations in the parent node).

Example: selecting a split with Gini index

• Calculating the Gini index of a child node in yellow cell:

1 − ଷଷଽ
ସ଺଺

ଶ
− ଵଶ଻

ସ଺଺

ଶ
= 0,397

• Gini index for the entire split in the green cell:

ସ଺଺
ଵଷ଴ଽ

ȉ଴,ଷଽ଻ା
଼ସଷ
ଵଷ଴ଽ

ȉ଴,ଷ଴ଽୀ଴,ଷସ଴

• Choose the split criterion with the lowest Gini index for the entire split (option A, gender).

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

25

A

B

C

Split criterion and tree size

• The resulting decision tree gets increasingly complex
as the nodes are repeatedly split based on Gini index.

• What is an optimal size for the tree?

• The decision tree algorithm can include a distinct
pruning phase where the resulting tree is pruned into a
simpler shape.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

26

Confusion matrix

• Confusion matrix is used to evaluate the classification
performance of a decision tree.
– The matrix (aka. contingency table) show how often the true and

predicted classification match.

– Note that the performance is so far evaluated from the training set.
• The performance evaluation is likely to be too optimistic.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

27

Confusion matrix

• The confusion matrix contains four frequencies.

• Pay attention to the recall and precision figures in the margins.

• E.g. the following results can be seen:
– The tree classifies correctly 79% of the observations.
– There were 34 cases where survival was predicted but the passenger died.
– For survivors, the survival could be predicted with a probability of 57%.
– For the deceased, the death could be predicted with a probability of 95%.
– When the decision tree predicts survival, the probability of survival is 88%.
– When the decision tree predicts death, the probability of death is 76%.

• In Python, use sklearn.metrics.confusion_matrix() to compute the confusion matrix.
– The recalls and the precisions can easily be computed as a post-processing step, or using

sklearn.metrics.classification_report() .

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

28

Setting parameters in Python

• Extreme tree complexity and overfitting is often a problem
with decision trees.

• The complexity of a decision tree in Python/scikit-learn is
mainly controlled by three parameters:
– max_depth defines the maximum depth of the tree.
– min_samples_split and min_samples_leaf define the minimum

number of observations at any intermediate node, and,
respectively, leaf node.

• Any one of them can be used to adjust the size of the
resulting tree.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

29

Problem: model overfitting

• The ML method produces the model (e.g. a decision
tree) based on the training set.

• When the data set is small, the model can be based on
rules that are not applicable in the general population.

• The goodness of a classifier must not be evaluated
from the training set.

• Next, we focus on validation that reveals the
aforementioned problems.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

30

Problem: Titanic and the decision tree

• The tree may have adapted to special characteristics of
the training set. In a repeated experiment (!) it may not
perform as well.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

31

Analysis pipeline (with validation)

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

32

Validation methods

1. Validation with training set (= no validation)

2. Validation with a separate testing set

3. Cross-validation

4. Split validation

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

33

Validation with a separate testing set

• The best option for validation is to do it with new, real
data set.

• For this new set, testing set, it is necessary to know the
correct classes.

• The predicted classes can then be compared to the
known, correct classes.
– This reveals the true performance of the classifier with a data

set that has not been used in the model construction.

• It is not always possible to have a new data set.
– E.g. in Titanic case, there’s just the original passenger data.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

34

Split validation

• Split validation is a straightforward validation strategy.

• The original data set is split into two separate data sets: a
training set and a testing set.
– Thus, not all of the data are used in model construction; a fraction

is set apart for validation.
– The ratio of the sizes of the two data sets is controlled by a

parameter: e.g. if 2/3 is used for decision tree construction, then
1/3 can be used as a testing set.

• A large training set produces a more accurate model, but the estimate
of the accuracy is less reliable (due to the small size of the testing
set).

• A small training set may produce a weaker model, but the estimate of
the accuracy of the (potentially weaker) model is more reliable.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

35

Cross validation

• Cross validation aims at ensuring that a single unlucky split
into training and testing set will not skew the validation result.
– The data set is split into a desired number (k) of subsets.
– The validation procedure comprises k rounds.
– Each of the k subsets acts in turn as a test set.
– The union of the k-1 remaining subsets makes the training set for

that round.

• For example, assuming =10, in each of the 10 rounds:
– 90% of the data set acts as a training set. The decision tree is

constructed based on that set. The tree can differ from one round to
another.

– The remaining 10% acts as a test set. From this set, it is calculated
how well the tree classified in this round.

• Finally, the results obtained from 10 small test sets are
combined into a single confusion matrix and a global
accuracy estimate.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

36

Leave-one-out cross validation

• Leave-on-out cross validation is a special case of cross
validation.

• In each round, the testing set contains just one
observation.
– In a data set of observations, all the remaining

observations constitute the training set.
– Each round produces just one classification result (’correct’ or

’wrong’)

• Finally, the classification results are combined for a
confusion matrix and accuracy estimate.

• Computationally heavy but minimizes the effect of
random sampling.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

37

Example: cross-validation for Titanic

• The accuracy estimate obtained by cross-validation (=10), is 75,2%.

• The estimate of the accuracy should be based on the validated result.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

38

Random forests

• The random forest algorithm constructs a set of decision trees simultaneously.
– It is an example of an ensemble method that creates a collection of models simultaneously.

• Randomness is introduced into the construction of the trees.

• This mitigates model overfitting.
– The validation is built in the model generation, so a distinct validation phase is not required.

• In scikit-learn implementation
(sklearn.ensemble.RandomForestClassifier):

– The training set for each tree is of the same size as the original data, but sampled with
replacement.

– A random subset of variables is selected at each intermediate node. The best split for
those variables is selected. (max_features)

– The number of trees (e.g. 10) is a parameter. (n_estimators)
– The overall output is the mode of the classifications of the individual trees.

• That is: if 7 of the trees predict an observation to fall in class 1, and 3 of the trees predict
class 2, the “majority vote” wins and the forest outputs class 1.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

39

Random forest

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

40

100 obs.

100 obs. 100 obs. 100 obs. 100 obs. 100 obs. 100 obs.

yes yes yes yesno noObs.1

Obs.2

Obs.100

yes

yes no no no no yes no

yes no yes no yes yes yes

…

Predictions

Sample with replacement

Finally

• kNN, decision trees, and random forests are classification methods that rely on
the use of a training set.

• The estimate of the classification accuracy based on the training set is usually
too high.

– This is due to model overfitting (random noise is incorporated in the model).

• Validation provides a means to get an estimate of the accuracy for a data set
that has not been included in the model construction.

• The idea is that this estimate holds true for any ’new’ data as well, i.e. the
scoring set.

• Ultimately, if the test and scoring sets stem from the same population, the
accuracy estimate for the testing set can then be generalized to the scoring
set.

– This estimate acts as a justification for applying the results (e.g. a decision tree) in real life,
to achieve the business goals.

• Model validation is easy and straghtforward. It should always be done.
– The validation aspect is incorporated in the construction of random forests.

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

41

