### Classifiers

#### Idea, kNN, decision tree, random forest



# Learning goals

- 1. Learn the idea of classifiers.
- 2. Understand the idea and applicability of kNN.
- 3. Understand the idea and applicability of decision tree and random forest classifiers
- 4. Learn how to validate the data for model overfitting.



# Classification

- The goal of a classifier is to classify each observation into one of prespecified classes.
- The response variable contains the class information.
- The classification is based on the explanatory variables values.
- There can be two or more classes for the response variable.
  - For a credit decision: {yes, no}
  - For image recognition tens of thousands of classes: {fire truck, tram, nose, cat, dog, snowball, statue, ...}
    - See e.g. the demo of Microsoft image recognition API: <u>https://azure.microsoft.com/en-us/services/cognitive-</u> <u>services/computer-vision/</u>



# Example

| Sepal length + | Sepal width 🗢 | Petal length + | Petal width + | Species + |
|----------------|---------------|----------------|---------------|-----------|
| 5.1            | 3.5           | 1.4            | 0.2           | I. setosa |
| 4.9            | 3.0           | 1.4            | 0.2           | I. setosa |
| 4.7            | 3.2           | 1.3            | 0.2           | I. setosa |
| 4.6            | 3.1           | 1.5            | 0.2           | I. setosa |
| 5.0            | 3.6           | 1.4            | 0.3           | I. setosa |
| 5.4            | 3.9           | 1.7            | 0.4           | I. setosa |

- Recall that Iris species determination was a classification problem:
  - Four explanatory variables:
    - Sepal length
    - Sepal width
    - Petal length
    - Petal width
  - One response variable
    - Species: {Iris Setosa, Iris Versicolor, Iris Virginica}



# Example

- The goal in classification is to build a model that turns the explanatory variable values into a response variable value.
- A decision tree is an example of such a model.

```
J48 pruned tree
_______
petalwidth <= 0.6: Iris-setosa (50.0)
petalwidth > 0.6
| petalwidth <= 1.7
| | petallength <= 4.9: Iris-versicolor (48.0/1.0)
| | petallength > 4.9
| | | petallength > 4.9
| | | petalwidth <= 1.5: Iris-virginica (3.0)
| | | petalwidth > 1.5: Iris-versicolor (3.0/1.0)
| petalwidth > 1.7: Iris-virginica (46.0/1.0)
```



# Example

• The generated model can be used for prediction:

| Sepal length \$ | Sepal width 🗢 | Petal length + | Petal width + | Species + |
|-----------------|---------------|----------------|---------------|-----------|
| 6.2             | 2.8           | 4.8            | 1.8           | ?         |
| 6.1             | 3.0           | 4.9            | 1.8           | ?         |
| 6.4             | 2.8           | 5.6            | 2.1           | ?         |
| 7.2             | 3.0           | 5.8            | 1.6           | ?         |



### **Classification methods**

- Various methods can be used for classification:
  - kNN (k nearest neighbours)
  - Decision tree
  - SVM (support vector machine)
  - Logistic regression
  - ANN (artificial neural network)
- The goodness of a classifer's outcome can be measured by:
  - Accuracy
  - Precision
  - Recall
- Next, let's focus on kNN and decision trees.



# kNN algorithm

- kNN (*k nearest neighbours*) algorithm repeats the following steps for each observation to be classified:
  - 1. Compute the distance of the observation to each of the observations in the training set.
  - 2. Based on the distance, sort the observations into increasing order.
  - 3. Select those observations that are among *k* closest observations (i.e. the *k* first observations in the sorted training set).
  - 4. Predict the class that is most common in the set of *k* closest training set observations.



## kNN algorithm

| kNN demo (u    | inscaled varia  | ables)           | Vesa Ollikair   | nen                          |                |              |      | species         | count    | position |       |
|----------------|-----------------|------------------|-----------------|------------------------------|----------------|--------------|------|-----------------|----------|----------|-------|
| Feel free to n | nodify the inpu | ut data in the g | green cells. Th | he classification outcome is | displayed in t | he yellow ce | ell. |                 |          |          |       |
|                |                 |                  |                 |                              |                |              |      | Iris-setosa     | 1        | 2        |       |
| sepallength    | sepalwidth      | petallength      | petalwidth      | predicted species            | k              |              |      | Iris-versicolor | 9        | 1        |       |
| 4,5            | 3               | 3                | 0,7             | Iris-versicolor              | 10             |              |      | Iris-virginica  | 0        | 3        |       |
| sepallength    | sepalwidth      | petallength      | petalwidth      | species                      | dsl            | dsw          | dpl  | dpw             | distance | rank     | top-k |
| 5,1            | 3,5             | 1,4              | 0,2             | Iris-setosa                  | -0,6           | -0,5         | 1,6  | 0,5             | 1,849324 | 55       | 0     |
| 4,9            | 3               | 1,4              | 0,2             | Iris-setosa                  | -0,4           | 0            | 1,6  | 0,5             | 1,723369 | 34       | 0     |
| 4,7            | 3,2             | 1,3              | 0,2             | Iris-setosa                  | -0,2           | -0,2         | 1,7  | 0,5             | 1,794436 | 47       | 0     |
| 4,6            | 3,1             | 1,5              | 0,2             | Iris-setosa                  | -0,1           | -0,1         | 1,5  | 0,5             | 1,587451 | 20       | 0     |
| 5              | 3,6             | 1,4              | 0,2             | Iris-setosa                  | -0,5           | -0,6         | 1,6  | 0,5             | 1,849324 | 56       | 0     |
| 5,4            | 3,9             | 1,7              | 0,4             | Iris-setosa                  | -0,9           | -0,9         | 1,3  | 0,3             | 1,843909 | 53       | 0     |
| 4,6            | 3,4             | 1,4              | 0,3             | Iris-setosa                  | -0,1           | -0,4         | 1,6  | 0,4             | 1,7      | 31       | 0     |
| 5              | 3,4             | 1,5              | 0,2             | Iris-setosa                  | -0,5           | -0,4         | 1,5  | 0,5             | 1,705872 | 32       | 0     |

• See the demo spreadsheet in the material for Day 2.



# **Evaluation of kNN**

- Strengths
  - Easy to understand and implement.
  - Works well for a large group of problems.
- Weaknesses
  - Classification of a new observation requires memorizing and sorting the entire training set
    - Computation time and memory consumption
  - Hyper parameter *k*.
  - Requires the measurability of distance between the observations.
    - The choice of the measure is not always self-evident.
      - Euclidian distance vs. Manhattan distance vs. other distance measures



### Idea of decision trees

- Decision trees are a classification method.
- They are suitable for
  - Visualizing decision-making processes
  - Classifying observations into predetermined classes
- The decision trees describe how certain conditions lead into an action or an outcome for each observation
- Decision trees can be used as a tool for prediction.
  - The prediction is based on a decision tree constructed from earlier observations with know outcome.
  - For example, predict occurrence of stroke (yes/no) based on age, smoking, and cholesterol level.
    - The occurence of a stroke is a response variable.
    - The other variables are called explanatory variables.
- The explanatory variables can be of any scale (class, ordinal and/or interval).
- Let's consider decision trees as a visualization tool first.



#### A decision tree: an example

- An example depicts the formation of a student's state housing benefit in Finland (until 2017).
- A choice is made in each internal node of the tree.
- The leaf nodes (aka terminal nodes) represent the potential outcomes.





# Probability distribution as an outcome of classification

- The decision tree of the previous example produced an absolute outcome (class).
  - The conditions unequivocally determined the class of the observation.
  - There were four classes:
    - No benefit
    - 58,87€
    - 80% of housing costs
    - Maximum benefit (80% × 252€)
- The outcomes of classification can be probability distributions.
- Example: classify fruit into apples and oranges based on peel colour and fruit size.
  - An outcome of a decision tree can be e.g. that an individual fruit has a 93% probability of being an apple and a 7% probability of being an orange.



#### Prediction with decision trees

- Based on a training set (aka. *learning set*) a model is generated. The model tells the rule how the value of a response variable is deduced based on explanatory variables.
  - For the learning set, the correct answer is known.
- For the scoring set, the goal is to predict the value of the response variable based on the constructed model.





#### Prediction: an example

- Classify fruit based on peel color (RGB) and diameter.
- Step 1: Build a model (decision tree) based on the training set.
  - Correct answers, i.e. humanclassified apple/orange values, are used in the construction

| Id     | R   | G  | В  | Diameter | Species |
|--------|-----|----|----|----------|---------|
| 1      | 178 | 49 | 37 | 9.2      | Apple   |
| 2      | 182 | 66 | 44 | 10.9     | Apple   |
| 3      | 204 | 72 | 13 | 10.6     | Orange  |
| 4      | 161 | 35 | 50 | 8.3      | Apple   |
|        | •   |    |    |          |         |
| 100000 | 128 | 55 | 13 | 9.9      | Orange  |





#### Prediction: an example

• Step 2: In production, the model (the decision tree) is applied for classifying the actual, unknown fruit.



Diameter Species R G В Id 1 162 59 37 9.0 ? 2 192 96 24 8.9 ? 3 224 12 13 11.1 ? 4 131 45 50 7.3 ? 5 112 49 63 11.1 ?

| Ta |
|----|
| 1  |
| 2  |
| 3  |
| 4  |
| 5  |

| Id | R   | G  | В  | Diameter | Species |
|----|-----|----|----|----------|---------|
| 1  | 162 | 59 | 37 | 9.0      | Apple   |
| 2  | 192 | 96 | 24 | 8.9      | Orange  |
| 3  | 224 | 12 | 13 | 11.1     | Orange  |
| 4  | 131 | 45 | 50 | 7.3      | Apple   |
| 5  | 112 | 49 | 63 | 11.1     | Apple   |



## Construction of a decision tree

- Key question: "How can we construct the decision tree in such a way that it classifies as well as possible?"
- Good classification referes to the situation where the probability distributions in the leaf nodes are as uneven as possible.
  - This makes the classifications more reliable.
  - E.g. a node with "93% apples, 7% oranges" is better than a node with "88% apples, 12% oranges".
- In the next example, we construct a decision tree for predicting the survival of passengers in RMS Titanic.



#### **Example: RMS Titanic**

- 1 pclass;sex;age;survived
- 2 1;female;29;1
- 3 1;male;0.9167;1
- 4 1;female;2;0
- 5 1;male;30;0
- 6 1;female;25;0
- 7 1;male;48;1
- 8 1;female;63;1
- 9 1;male;39;0
- 10 1;female;53;1
- 11 1;male;71;0
- 12 1;male;47;0
- 13 1;female;18;1
- 14 1;female;24;1
- 15 1;female;26;1
- 16 1;male;80;1
- 17 1;male;;0
- 18 1;male;24;0
- 19 1;female;50;1
- 20 1;female;32;1
- 21 1;male;36;0
- 22 1;male;37;1



- There were 1309 passengers onboard.
  - i.e. the data set (passenger record) contains 1309 observations.
- The variables are
  - Travel class (1/2/3)
  - Gender (male/female)
  - Age (integer, except for babies )
  - Survival status (1/0)
- The survival status is considered as a response variable.
  - The remaining variables are explanatory variables.





#### **RMS** Titanic: two decision trees



- The blue vs red color in the bar depicts the proportion of the survived vs deceased passengers.
- The integers below are numbers of observations.





### Size of the decision tree

- At first glance, a more complex decision tree automatically seems to produce a more accurate classification.
- However, there's a danger of model overfitting.
  - There's always random noise in the data. When the characteristics of the noise are incorporated into the model, the prediction accuracy does not improve.
  - This is revealed by validation, which we will cover shortly.



# Hunt's algorithm

- Hunt's algorithm is a classic decision-tree construction algorithm.
- It starts from an empty tree that contains only the root. Initially, all observations go to the root node.
- In subsequent steps, the tree is constructed top-down by reiterating the two steps:
  - 1. Find a division rule that splits the observations in the node into two or more groups in such a way that the distributions of the response variable are as different as possible between the resulting nodes.
  - 2. Based on the optimal division rule, create two or more child nodes for the node at hand. For each child node, repeat from Step 1 unless the termination criterion is met.
- The termination criterion: quit splitting a node when:
  - All observations fall into the same class, or,
  - There are no differences between the observations that the split can be based on, or
  - The number of observation falls below a predetermined mininum threshold.



# Split rules in Hunt's algorithm

- Initially all passenger of RMS Titanic are in the root node.
- To begin with, all possible split rules are tested:
  - A. Split based on gender
  - B. Split based on travel class
  - C. Split based on age.
    - This is computationally more challenging as there is a infinite number of potential cutoff points to be considered
    - C4.5 algorithm can use non-categorical variables and dynamically find the optimal cutoff point.
- Gini index (see following slide) can be used to find the best split rule.



# Gini index in testing split rules

- It is necessary to find a criterion for goodness of split in a decision tree node,
- Gini index (aka. *Gini coefficient*, *Gini impurity*) of a node measures how tightly the observations in a given node fall into the same class.
  - If all observations go strictly into the same class, Gini index equals zero.
  - As the variation increases, Gini index approaches unity.



# Gini index

• For a node *t*:  $g(t) = 1 - \sum_{i=1}^{n} p_i^2$ 

where n is the number of classes, and  $p_i$  is the probability that an observation falls into class i.

• For a split: 
$$\sum_{t \in T} \frac{|t|}{|T|} g(t)$$

where *T* is the set of all child nodes, |t| is the number of observations in a single child node, and |T| is the total number of observations in all child nodes (i.e. the number of observations in the parent node).



### Example: selecting a split with Gini index

|   | Observations |        |          |          |       |                    |                     |
|---|--------------|--------|----------|----------|-------|--------------------|---------------------|
|   | 1309         |        |          |          |       |                    |                     |
|   |              | Gender | Survived | Deceased | Total | Gini index of node | Gini index of split |
| Α |              | female | 339      | 127      | 466   | 0,397              | 0,340               |
|   |              | male   | 161      | 682      | 843   | 0,309              |                     |
|   |              | Class  | Survived | Deceased | Total | Gini index of node | Gini index of split |
|   |              | 1      | 200      | 123      | 323   | 0,472              | 0,426               |
| В |              | 2      | 119      | 158      | 277   | 0,490              |                     |
|   |              | 3      | 181      | 528      | 709   | 0,380              |                     |
|   |              | Age    | Survived | Deceased | Total | Gini index of node | Gini index of split |
| ~ |              | <9.5   | 113      | 220      | 333   | 0,448              | 0,471               |
| U |              | >=9.5  | 387      | 589      | 976   | 0,479              |                     |





• Calculating the Gini index of a child node in yellow cell:

$$1 - \left(\frac{339}{466}\right)^2 - \left(\frac{127}{466}\right)^2 = 0,397$$

• Gini index for the entire split in the green cell:

$$\frac{466}{1309} \cdot 0,397 + \frac{843}{1309} \cdot 0,309 = 0,340$$

• Choose the split criterion with the lowest Gini index for the entire split (option A, gender).



### Split criterion and tree size

- The resulting decision tree gets increasingly complex as the nodes are repeatedly split based on Gini index.
- What is an optimal size for the tree?
- The decision tree algorithm can include a distinct pruning phase where the resulting tree is pruned into a simpler shape.



### **Confusion matrix**

- Confusion matrix is used to evaluate the classification performance of a decision tree.
  - The matrix (aka. contingency table) show how often the true and predicted classification match.
  - Note that the performance is so far evaluated from the training set.
    - The performance evaluation is likely to be too optimistic.





#### **Confusion matrix**

Confusion matrix: [[585 34] [182 245]] Accuracy calculated from the training set = 0.793 precision recall f1-score support 0.76 0.95 0.84 619 no 0.57 0.69 0.88 427 yes 0.81 0.79 0.78 1046 avg / total

- The confusion matrix contains four frequencies.
- Pay attention to the recall and precision figures in the margins.
- E.g. the following results can be seen:
  - The tree classifies correctly 79% of the observations.
  - There were 34 cases where survival was predicted but the passenger died.
  - For survivors, the survival could be predicted with a probability of 57%.
  - For the deceased, the death could be predicted with a probability of 95%.
  - When the decision tree predicts survival, the probability of survival is 88%.
  - When the decision tree predicts death, the probability of death is 76%.
- In Python, use **sklearn.metrics.confusion\_matrix()** to compute the confusion matrix.
  - The recalls and the precisions can easily be computed as a post-processing step, or using sklearn.metrics.classification\_report().



# Setting parameters in Python

```
from sklearn import tree
classifier = tree.DecisionTreeClassifier(max_depth=2)
```

- Extreme tree complexity and overfitting is often a problem with decision trees.
- The complexity of a decision tree in Python/scikit-learn is mainly controlled by three parameters:
  - max\_depth defines the maximum depth of the tree.
  - min\_samples\_split and min\_samples\_leaf define the minimum number of observations at any intermediate node, and, respectively, leaf node.
- Any one of them can be used to adjust the size of the resulting tree.



#### Problem: model overfitting

- The ML method produces the model (e.g. a decision tree) based on the training set.
- When the data set is small, the model can be based on rules that are not applicable in the general population.
- The goodness of a classifier must not be evaluated from the training set.
- Next, we focus on validation that reveals the aforementioned problems.



#### Problem: Titanic and the decision tree

| Row No. | survived | pclass | sex    | age   |
|---------|----------|--------|--------|-------|
| 1       | 1        | 1      | female | 29    |
| 2       | 1        | 1      | male   | 0.917 |
| 3       | 0        | 1      | female | 2     |
| 4       | 0        | 1      | male   | 30    |
| 5       | 0        | 1      | female | 25    |
| 6       | 1        | 1      | male   | 48    |
| 7       | 1        | 1      | female | 63    |
| 8       | 0        | 1      | male   | 39    |
| 9       | 1        | 1      | female | 53    |
| 10      | 0        | 1      | male   | 71    |
| 11      | 0        | 1      | male   | 47    |
| 12      | 1        | 1      | female | 18    |
| 13      | 1        | 1      | female | 24    |
| 14      | 1        | 1      | female | 26    |



 The tree may have adapted to special characteristics of the training set. In a repeated experiment (!) it may not perform as well.



### Analysis pipeline (with validation)



# Validation methods

- 1. Validation with training set (= no validation)
- 2. Validation with a separate testing set
- 3. Cross-validation
- 4. Split validation



# Validation with a separate testing set

- The best option for validation is to do it with new, real data set.
- For this new set, testing set, it is necessary to know the correct classes.
- The predicted classes can then be compared to the known, correct classes.
  - This reveals the true performance of the classifier with a data set that has not been used in the model construction.
- It is not always possible to have a new data set.
  - E.g. in Titanic case, there's just the original passenger data.



# Split validation

- Split validation is a straightforward validation strategy.
- The original data set is split into two separate data sets: a training set and a testing set.
  - Thus, not all of the data are used in model construction; a fraction is set apart for validation.
  - The ratio of the sizes of the two data sets is controlled by a parameter: e.g. if 2/3 is used for decision tree construction, then 1/3 can be used as a testing set.
    - A large training set produces a more accurate model, but the estimate of the accuracy is less reliable (due to the small size of the testing set).
    - A small training set may produce a weaker model, but the estimate of the accuracy of the (potentially weaker) model is more reliable.



### **Cross validation**

- Cross validation aims at ensuring that a single unlucky split into training and testing set will not skew the validation result.
  - The data set is split into a desired number (k) of subsets.
  - The validation procedure comprises *k* rounds.
  - Each of the k subsets acts in turn as a test set.
  - The union of the k-1 remaining subsets makes the training set for that round.
- For example, assuming k=10, in each of the 10 rounds:
  - 90% of the data set acts as a training set. The decision tree is constructed based on that set. The tree can differ from one round to another.
  - The remaining 10% acts as a test set. From this set, it is calculated how well the tree classified in this round.
- Finally, the results obtained from 10 small test sets are combined into a single confusion matrix and a global accuracy estimate.



#### Leave-one-out cross validation

- Leave-on-out cross validation is a special case of cross validation.
- In each round, the testing set contains just one observation.
  - In a data set of n observations, all the remaining n-1 observations constitute the training set.
  - Each round produces just one classification result ('correct' or 'wrong')
- Finally, the *n* classification results are combined for a confusion matrix and accuracy estimate.
- Computationally heavy but minimizes the effect of random sampling.



#### Example: cross-validation for Titanic

```
Confusion matrix:
[[585 34]
[182 245]]
Accuracy calculated from the training set = 0.793
```

```
Accuracies from 10 individual folds:

[0.83809524 0.86666667 0.84761905 0.82857143 0.76190476 0.83809524

0.8 0.59615385 0.52884615 0.61165049]

Accuracy calculated using 10-fold cross validation = 0.752
```

- The accuracy estimate obtained by cross-validation (k=10), is 75,2%.
- The estimate of the accuracy should be based on the validated result.



### Random forests

- The random forest algorithm constructs a set of decision trees simultaneously.
  - It is an example of an ensemble method that creates a collection of models simultaneously.
- Randomness is introduced into the construction of the trees.
- This mitigates model overfitting.
  - The validation is built in the model generation, so a distinct validation phase is not required.
- In scikit-learn implementation (sklearn.ensemble.RandomForestClassifier):
  - The training set for each tree is of the same size as the original data, but sampled with replacement.
  - A random subset of variables is selected at each intermediate node. The best split for those variables is selected. (max\_features)
  - The number of trees (e.g. 10) is a parameter. (**n\_estimators**)
  - The overall output is the mode of the classifications of the individual trees.
    - That is: if 7 of the trees predict an observation to fall in class 1, and 3 of the trees predict class 2, the "majority vote" wins and the forest outputs class 1.



#### **Random forest**





# Finally

- kNN, decision trees, and random forests are classification methods that rely on the use of a training set.
- The estimate of the classification accuracy based on the training set is usually too high.
  - This is due to model overfitting (random noise is incorporated in the model).
- Validation provides a means to get an estimate of the accuracy for a data set that has not been included in the model construction.
- The idea is that this estimate holds true for any 'new' data as well, i.e. the scoring set.
- Ultimately, if the test and scoring sets stem from the same population, the accuracy estimate for the testing set can then be generalized to the scoring set.
  - This estimate acts as a justification for applying the results (e.g. a decision tree) in real life, to achieve the business goals.
- Model validation is easy and straghtforward. It should always be done.
  - The validation aspect is incorporated in the construction of random forests.

