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Learning goals

1. Learn the idea and applicability of clustering.

2. Understand the idea of selected clustering algorithms:
– K-means
– Agglomerative hierarchical clustering

3. Learn to conduct cluster analysis in Python.
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Cluster analysis

• Clustering (or cluster analysis) is one of the most
straighforward unsupervised machine learning methods.

• It is applicable to numeric variables at interval scale.
– i.e. it must be possible to measure distances between the values.

• It finds internal structure in the data that is often
unobservable by naked eye.
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”People who love running and frequently read political thrillers
form a distinct customer group”



The idea of cluster analysis

• Cluster analysis, or, clustering means
automatical grouping of observations
based on values of multiple variables.

• Similar observations end up in the
same cluster.

• The figure shows the formation of three
clusters in two-dimensional space.

• In the figure, there are two variables
corresponding to the x and y
coordinates.

• If there are n variables, clusters are
formed in n-dimensional space.
– Impossible to visualize by humans if ݊ >

3.
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The goal of cluster analysis

• The goal is to find a representative set of typical, yet
different, groups of observations.

• Suitable for generating stereotypes and profiling.

• In the next few slides, we focus on two clustering
techniques
– k-means
– agglomerative hierarchical clustering
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Requirements for the data

• Cluster analysis is based on measuring distances.
– Usually ”regular” Euclidean distance.

• Distance can be measured only if the variables are of at least
interval scale.
– E.g. income in euros, human height and weight.
– Some ordinal scale variables can be usable, e.g. school grades.

• The variables need to be ”equidistant enough”.
– Also, binary nominal variables can be used.

• Can be recoded as 0 and 1, and, subsequently, standardized.

• The mean and variance of the variable values should ideally be
uniform.
– Otherwise, the variables with large variance dominate cluster generation.
– To achieve this, the variables usually need to be standardized as a

preprocessing step.
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Standard score

• Calculating the standard score – or z-score – is a common way of shifting and
rescaling variable values.

• A standardized variable value is obtained by substracting the mean from each
observation, after which the result is divided by standard deviation.

– Standard deviation is the average of squared differences from the mean.

• The mean and standard deviation can easily be computed from the sample.
• The resulting variable has a mean of zero and a variance of one.
• As a consequence of standardization, the variables are ”treated equally” in the

analysis.
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Phases of k-means algorithm

1. Decide the number of clusters k.
2. Standardize the observations if necessary.
3. Select k cluster centerpoints – called as centroids.

– either randomly, or
– by selecting random observations.

4. Compute the distance between each observation and each centroid.l
5. Assign observation to the cluster whose centroid is closest to the

observation.
– This divides the observation space into so-called Voronoi cells (see next slide).

6. The location of each centroid is computed again from the observation
assigned to that cluster.
– Done by taking the mean of each coordinate.

7. Repeat from step 4 unless the centroids have stayed same.
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Voronoi cells in the k-means algorithm

• In the Step 5 of the previous slide,
each observation was assigned to
the cluster whose centroid is closest
to the observation.

• As a consequence, the observation
space is split into Voronoi cells (see
figure). The dots represent centroids.

• The areas of similar color belong to
the same cluster.

• All observations within same cluster
are closest to the same centroid.
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Demo of k-means algorithm

• In the Oma workspace there is an demo spreadsheet
clustering_demo.xlsm that simulates the k-means
algorithm for k =2 (two clusters) in three-dimensional
space (three variables).
– First, set the cluster centerpoints (centroids).
– You can also play with data values.
– By pressing the green arrow, you proceed to the next iteration.
– You have to allow macros to be able to run the demo.
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Demo of k-means algorithm

Machine Learning with Python
Sendai KOSEN
Vesa Ollikainen

11



On k-means algorithm

• The algorithm is iterative.
– The cluster division gets ’better’ in each iteration.
– Finally, the algorithm converges into a result that won’t change.

• The result is not necessarily an optimal cluster division.
– The cluster formation problem is NP complete. There is no

general solution that is guarenteed to find the best division
(unless computation time is allowed to grow very fast).
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Hierarchichal clustering

• In hierarchical clustering, the number of clusters
changes dynamically as the algorithm proceeds.
1. Agglomerative clustering

• All data points are in the separate clusters. The clusters with
smallest distance are repeatedly merged.

2. Divisive clustering
• First, all observations are in the same cluster. In each step, a non-

hierarchical clustering method is applied within clusters. As a
consequence, the number of clusters grows.
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Agglomerative hierarchical clustering
example
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• In the example,
there at 5
random data
point.

• In each step, two
closest clusters
are combined.

• The new cluster
centerpoint is the
average of all
points in the
merged clusters.



Computation of inter-cluster distances

• The linkage criterion dictates how the distances
between the clusters are computed:
– Minimum: distance between the closest observations.
– Maximum: distance between the most distant observations
– Average (UPGMA): average distance between observations
– Centroid (UPGMC): distance between cluster centerpoints
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Dendrogram

• A dendrogram can
be drawn from the
process of
agglomerative
clustering.

• It visualizes the
distances between
pairs of
observations.
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Other clustering approaches

• Distribution-based clustering
– In the beginning, form one cluster. In each step, the distance of

each observation from the existing clusters is computed. If it is
below a given threshold, assign the observation to that cluster.
Otherwise, form a new cluster.

• Density-based clustering
– Define clusters as dense areas of observations surrounded by

sparse regions of observations.
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Clustering in Python

• scikit-learn package contains implementations of
clustering algorithms.

• For an example of a k-means clustering task, see the
contents of Appreciation (demo) notebook.
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