Data manipulation

Reading and manipulating the data

Machine Learning with Python Sendai KOSEN Vesa Ollikainen

Learning goals for this session

- 1. Learn the basics of examining, verifying and manipulation of data programmatically.
- 2. Learn to manipulate data with Python fluently.
 - Focus on **pandas** library

Data preparation

- Data preparation is the most important phase in a machine learning project.
- It is also the most time-consuming.
 - Takes about 90% of the time.
- Idea: convert the data into a single table.

Concepts of tabular data model

variable (unique	e label) variable	e (order sc	ale)	variable (nom	inal scale)		variable (ratio scale)
ID	Sports and exercise	Literature	Music	Monthly income	Gender	Age	K
1	4	5	7	2353	М	47	
2	6	6	6	2954	М	63	
3	5	7	5	3253	М	44	
4	2	2	4	1484	M	31	
5	10	3	7	2246	M	37	observation
6	5	3	4	1978	F	23	
7	7	2	7	2485	F	50	
8	3	1	4	2822	M	25	
9	7	6	9	3799	F	46	
10		2	9	2185	M	34	
11	5	3	1	3158	M	54	
12	7	3	1	2597	F	31	value
13	7	7	7	4305	M	48	
14	8	4	5	3534	M	46	
15		1	4	1811	F	21	
16	6	5	8	4142	M	46	
17	7	6	8	3085	F	59	
18	8	3	5	1653	F	27	
19	5	6	4	1934	F	47	
20		1	4	1816	M	33	
21	7	2	4	3013	M	34	

Machine Learning with Python Sendai KOSEN Vesa Ollikainen

CSV format

ID, Birth year, Gender, Heart rate, Stress hormone level, Score for exam 1, Score for exam 2
1, 1992, M, 60, 7.5, 80, 17
2, 1991, M, 54, 4.0, 86, 31
3, 1993, F, 69, 2.7, 70, 30
4, 1987, F, 70, 3.3, 90, 35

- CSV is a comma (or semicolon) separated line-oriented data format.
 It is supported in most machine learning environments.
- A CSV file is a human-readable ASCII file that can be edited with a common text editor.
- The first row contains variable names.
- The remaining rows contain observations.
 - The number of observations in data mining can vary from just a few to several billions.

Python data manipulation example

Id	Age	Weight	Cholesterol
1	25	72	4,6
2	60	112	7,9
3	39	82	5,5
4	20	71	5,3
5	72	90	7,2
6	66	68	6,1
7	68	74	8,4
8	61	99	9,2
9	40	80	5,0

- Consider the data set above.
- The aim is to read the data set into Python and compute the basic statistics (minimum, maximum, average) for each of the variables.
- Verifying data quality is a vital steps for any inference and/or learning from the data.
 - Analyzing minimum, maximum, and mean values.
 - Inspecting outliers, coding missing data.
 - Bad quality data is useless: GIGO principle ("garbage in, garbage out").

Step 1: coding tabular data in python

- A data set can be constructed from the scratch by generating an associative array of lists.
 - An associative array named data holds three (key, value) pairs in this example.
 - Each key is a string that holds the variable name.
 - Each value is a list of values in the observations.

Step 2: making a pandas data frame

		<i>rt to data fr</i> .DataFrame(da		
pı	cint(d	f)		
	age	cholesterol	weight	
0	25	4.6	72	
1	60	7.9	112	
2	39	5.5	82	
3	20	5.3	71	
4	72	7.2	90	
5	66	6.1	68	
6	68	8.4	74	
7	61	9.2	99	
8	40	5.0	80	

- Many machine learning methods implemented in the scikit-learn assume pandas data frames as the input format.
- Above, the associative array is converted into a data frame and printed.
- pd refers to the alias name for the imported pandas library.
- From now on, use pandas documention at <u>https://pandas.pydata.org/</u> → Documentation.

Step 3: printing basic statistics

res = print	df.describe (res)	:()		
	age	cholesterol	weight	
count	9.000000	9.00000	9.000000	
mean	50.111111	6.577778	83.111111	
std	19.464355	1.649074	14.692213	
min	20.000000	4.600000	68.000000	
25%	39.000000	5.300000	72.000000	
50%	60.000000	6.100000	80.000000	
75%	66.000000	7.900000	90.00000	
max	72.000000	9.200000	112.000000	

- By default, mean, standard deviation, minimum and maximum values as well as 25%, 50% and 75% percentiles are displayed.
 - E.g. the 75% percentile for cholesterol shows that 75% of the cholesterol values in the data set are smaller than or equal to 7.9.

Data structures

- Pandas supports two data structures:
 - 1. A series
 - 2. A data frame
- In addition, there is a deprecated Panel.
 - Deprecated functionality should not be used.

Series

In [19]:	<pre>import numpy as np import pandas as pd</pre>
	<pre>hours = pd.Series([8,5,3,2,7,0,0]) print(hours) print(hours[2])</pre>
	0 8
	1 5
	2 3
	3 2
	4 7
	5 0
	6 0
	dtype: int64
	3

- A series represents a vector of values.
 - One-dimensional
 - Labeled
 - Values can be of any data types
- Above, a series is constructed from a Python list structure.

Data frames

In [15]: # play with data frames
print(df)
print(df['cholesterol'])
print(df['cholesterol'][2])

	age	cholesterol	weight	gender	height
0	25	4.6	72	F	172
1	60	7.9	112	М	163
2	39	5.5	82	М	179
3	20	5.3	71	М	188
4	72	7.2	90	F	192
5	66	6.1	68	М	153
6	68	8.1	71	F	159
7	61	9.2	99	F	169
8	40	5.0	80	F	170
0	4.0	6			
1	7.9	9			
2	5.5	5			
3	5.3	3			
4	7.2	2			
5	6.3	1			
б	8.4	4			
7	9.2	2			
8	5.0)			
Na	me: cl	nolesterol, d	type: f	Loat64	
5.	5				

- A data frame stores an array of values.
- Columns can be accessed by labels.
- A data frame can be generated from various structures.

Adding columns, changing data types

In [181]:	# add new col	umns	
	df['gender']=	['F','M','M','	M','F','M','F','F','F']
	df['height']=	[172,163,179,1	88,192,153,159,169,170]
	# change gend	ler's dtype to	categorical
	df['gender']	<pre>= df['gender']</pre>	.astype(pd.api.types.CategoricalDtype(ordered=false))
	df.dtypes		
Out[181]:	age	int64	
Out[181]:	age cholesterol	int64 float64	
Out[181]:	2		
Out[181]:	cholesterol	float64	
Out[181]:	cholesterol weight	float64 int64	

- The data types of the columns should reflect the scales of the variables.
- This is vital for some of the machine learning algorithms to work correctly.
- Commonly used data types:
 - For ratio scale: int64 or float64
 - For interval scale: int64 or float64
 - For ordinal scale: CategoricalDtype(ordered=True)
 - For nominal scale: CategoricalDtype(ordered=False)

Machine Learning with Python Sendai KOSEN Vesa Ollikainen