
Client side web programming

Responsive Design &
HTML5
Jaana Holvikivi

School of ICT

Contents

 Responsive design

 Accessibility

 Audio and video

 Geolocation

 JQuery

Jaana Holvikivi 2 7.2.2013

Responsive design: Some rules

 A good mobile experience requires a different

design than the desktop.

 Start from mobile,

 create a mobile first design,

 then take performance seriously,

 use Javascript to add in additional content, and

 always use fluid layouts.

 This isn’t mobile Web design or desktop Web

design, it’s responsive Web design.

http://www.uie.com/articles/strategy_for_responsive_design

Jaana Holvikivi 3 7.2.2013

Devising a Strategy for Responsive Design

The Core Tactics: 1. Discovering the breakpoints.

 These are the page widths that will cause design elements to

re-order.

In between breakpoints, items will change their size or flow.

 A responsive design can have multiple breakpoints:

 for a small-screen phone,

 a large-screen phone,

 a tablet,

 a laptop/desktop.

 By letting the content and navigation drive the breakpoints,

teams find they can often get away with fewer screen

configurations. (high-resolution Retina iPad & laptop display,

lower resolution tablets might just need a little adjustment to

that same configuration).

Jaana Holvikivi 4 7.2.2013

http://www.uie.com/articles/strategy_for_responsive_design

http://www.uie.com/articles/strategy_for_responsive_design

The Core Tactics 2 & 3

2. Keeping page load times low.

 Smart placement of media queries and progressive

enhancement can dramatically reduce the footprint of

the CSS file on smaller, slower devices.

3. Image size optimization.

 Right now, this is the hardest core tactic to get under

control, because there are no solid best practices to

follow.

 Retina and other high-resolution technologies create a

problem for teams, because they need large images to

look good, but those same images are slow to load on

lower resolution screens.

Jaana Holvikivi 5 7.2.2013

Mobile First

 Luke Wroblewski: “What’s the minimum amount of content

and navigation that we need to make our design useful?

 The guiding principle of Mobile First is that it’s easier to

add to a design than to take away. By starting with a

minimum configuration, you can then add in more as you

gain more space from larger screens and resolutions.

 It’s possible that there are things in your current design

that don’t need to be in any responsive configuration,

because they really aren’t useful to the user.

Jaana Holvikivi 6 7.2.2013

Research First

 Does the team truly understand who their users

are? Do they know what those users will need

from their design?

 Field research, analytics, and other study

methods to understand

which functions are important and which are

nice-to-have.

 A set of scenarios

Jaana Holvikivi 7 7.2.2013

Shifting Information to Interaction

 Having a lot of screen real estate gives the designer leeway,

especially when it comes to flatting out the information

displayed.

 A strategy for creating interactions where information once laid

flat:

 Using an interactive interface, users can directly manipulate

filters to drill into the data they need.

 Site navigation:

 from mega-menus

 to thoughtfully interactive.

 Smaller screens beg for data to be a starting point of

interactions,

 with obvious touch actions for the most important functions

 subtle gestures for shortcuts.

Jaana Holvikivi 8 7.2.2013

WURFL, the Wireless Universal Resource FiLe

 WURFL is a Device Description Repository (DDR),

 a software component that maps HTTP Request headers

to the profile of the HTTP client (Desktop, Mobile Device,

Tablet, etc.) that issued the request

 wurfl.xml file (i.e. the repository) contains that definition

of thousands of devices

 WURFL Cloud is available at varying prices, also a free

Cloud

 WURFL APIs for all major platforms (PHP, Java, .net,

C++ and more)

Jaana Holvikivi 9 7.2.2013

CSS and media query

<meta name="viewport"

content="width=device-width, initial-scale=1">

@media (query)

 {

 /* CSS Rules used when query matches */

 }

@media (min-width: 500px) and (max-width:

600px)

Jaana Holvikivi 10 25.2.2015

Web Accessibility Initiative WAI

 http://www.w3.org/WAI/

 Web Content Accessibility Guidelines (WCAG) 2.0

 Designing for Inclusion design for all

 legislation requirements, see i.e.

http://www.intermin.fi/fi/kehittamishankkeet/maahanmuutt

o_2020

Jaana Holvikivi 11 7.2.2013

http://www.w3.org/WAI/
http://www.w3.org/WAI/
http://www.intermin.fi/fi/kehittamishankkeet/maahanmuutto_2020
http://www.intermin.fi/fi/kehittamishankkeet/maahanmuutto_2020
http://www.intermin.fi/fi/kehittamishankkeet/maahanmuutto_2020

Web Content Accessibility Guidelines 2.0

 avoid Flash and PDF

 Canvas might not show for screen readers

 Provide text alternatives for any non-text content

 Time-based Media: Provide alternatives for time-based

media; audio and video

 Adaptable: Create content that can be presented in

different ways (for example simpler layout) without

losing information or structure.

Jaana Holvikivi 12 7.2.2013

Web Content Accessibility Guidelines

 Distinguishable: Make it easier for users to see and hear

content including separating foreground from background.

 Keyboard Accessible

 Enough Time: Provide users enough time to read and use

content.

 Seizures: Do not design content in a way that is known to

cause seizures.

 Navigable

 Make text content readable and understandable.

 Make Web pages appear and operate in predictable ways.

 Input Assistance: Help users avoid and correct mistakes.

 Compatible: Maximize compatibility with current and future

user agents, including assistive technologies

Jaana Holvikivi 13 7.2.2013

HTML5 features

Audio and video

 Video formats:

 H.264 or MPEG-4 in Apple products (incl. Safari)

 Ogg: open source, free, see xiph.org

 Firefogg.org converts into ogg

 WebM

 Only Chrome supports all three

<div style="text-align:center" id="video1">

<video controls width="420" height="150">

 <source src="fish.mp4" type="video/mp4">

 <source src="fish.ogg" type="video/ogg">

 <source src="fish.webm" type="video/webm">

 Your browser does not support HTML5 video.

 </video>

</div>

Jaana Holvikivi 15 7.2.2013

Audio and video

 Audio formats:

 mp3

 Ogg or oga

 wav

<div style="text-align:center">

<audio controls id="audio1">

 <source src="bird1.mp3" type="audio/mpeg">

 <source src="bird1.oga" type="audio/ogg">

 <source src="bird1.wav" type="video/wav">

 Your browser does not support the audio element.

 </video>

</div>

Jaana Holvikivi 16 7.2.2013

Geolocation

The geolocation object

 The geolocation API is published through a geolocation child

object within the navigator object. If the object exists,

geolocation services are available

if ("geolocation" in navigator) {

 /* geolocation is available */

} else {

 alert("I'm sorry, but geolocation services are not supported by

your browser.");

}

 https://developer.mozilla.org/en-US/docs/Using_geolocation

 http://dev.w3.org/geo/api/spec-source.html

Jaana Holvikivi 17 7.2.2013

Getting the current position

To obtain the user's current location:

 call the getCurrentPosition() method.

 This initiates an asynchronous request to detect the user's position,

and queries the positioning hardware to get up-to-date information.

 When the position is determined, a specified callback routine is

executed.

 You can optionally provide a second callback to be executed if an

error occurs. A third, optional, parameter is an options interface

where you can set the maximum age of the position returned and the

time to wait for a request.

navigator.geolocation.getCurrentPosition(function(position) {

 do_something(position.coords.latitude, position.coords.longitude);

});

The above example will cause the do_something() function to execute

when the location is obtained.

Jaana Holvikivi 18 7.2.2013

A location-aware web page 1

<!DOCTYPE html>

<html>

<body>

<p id="demo">Click the button to get your coordinates:</p>

<button onclick="getLocation()">Try It</button>

<script>

var x=document.getElementById("demo");

function getLocation()

 {

 if (navigator.geolocation)

 {

 navigator.geolocation.getCurrentPosition(showPosition);

 }

 else{x.innerHTML="Geolocation is not supported by this browser.";}

 }

function showPosition(position)

 {

 x.innerHTML="Latitude: " + position.coords.latitude +

 "
Longitude: " + position.coords.longitude;

 }

</script></body></html>

Jaana Holvikivi 19 7.2.2013

A location-aware web page 2

<!DOCTYPE html>

<html><head><title>Location</title>

<script>

function findYou(){

 navigator.geolocation.getCurrentPosition(showPosition ,

 noLocation, {maximumAge:1100000, timeout:30000});

 }

function showPosition(position){

 var latitude = position.coords.latitude;

 var longitude = position.coords.longitude;

 var accuracy = position.coords.accuracy;

 document.getElementById("lat").innerHTML="your latitude is "+ latitude;

 document.getElementById("lon").innerHTML="your longitude is "+ longitude;

 document.getElementById("acc"). innerHTML="accurate within "+ accuracy +

"meters";

 }

function noLocation(locationError){

 document.write("Request failed");}

</script> </head>

<body>on the next page

 </body></html>

Jaana Holvikivi 20 7.2.2013

<body>

<h2>Your location</h2>

<script>

findYou();

</script>

<p id="lat">Here</p>

<p id="lon">Here</p>

<p id="acc">Here</p>

</body>

</html>

Jaana Holvikivi 21 7.2.2013

Google map call

Documentation at:

https://developers.google.com/maps/

<script src="http://maps.googleapis.com/maps/api/js?sensor=false">

</script>

var position = new google.maps.LatLng(latitude, longitude);

var map=new

google.maps.Map(document.getElementById("map1"),mapOpt);

<body>

<div id="map1" style="width:500px;height:450px;"></div>

</body>

Jaana Holvikivi 22 7.2.2013

http://jquery.org/ - Javascript library

Adding jQuery to Your Web Pages

 Download the jQuery library from jQuery.com;

 & Include it in your document

 <head>

 <script src="jquery-1.8.3.min.js"></script>

 </head>

 Include jQuery from a CDN (Content Delivery Network),

like Google

 <head>

 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js">

 </script>

 </head>

 or Microsoft

 <head>

 <script src="//ajax.aspnetcdn.com/ajax/jQuery/jquery-1.8.3.min.js">

 </script></head>

Jaana Holvikivi 23 7.2.2013

jQuery Syntax

 The jQuery syntax is tailor made for selecting HTML

elements and perform some action on the element(s).

 $(selector).action()

 A $ sign to define/access jQuery

 A (selector) to "query (or find)" HTML elements

 Similar to CSS selectors

 A jQuery action() to be performed on the element(s)

 Examples:

$(this).hide() - hides the current element.

$("p").hide() - hides all <p> elements.

$(".test").hide() - hides all elements with class="test".

$("#test").hide() - hides the element with id="test".

Jaana Holvikivi 24 7.2.2013

Jquery actions

 Fired by events, such as

moving a mouse over an element;

selecting a radio button;

clicking on an element

 Effects: hide/ show, animate

 Changing contents of the page (DOM)

 jQuery provides several methods for AJAX

functionality (server communication)

Jaana Holvikivi 25 7.2.2013

